Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2305517121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621135

RESUMO

Growing crops in more diverse crop systems (i.e., intercropping) is one way to produce food more sustainably. Even though intercropping, compared to average monocultures, is generally more productive, the full yield potential of intercropping might not yet have been achieved as modern crop cultivars are bred to be grown in monoculture. Breeding plants for more familiarity in mixtures, i.e., plants that are adapted to more diverse communities (i.e., adaptation) or even to coexist with each other (i.e., coadaptation) might have the potential to sustainably enhance productivity. In this study, the productivity benefits of familiarity through evolutionary adaptation and coevolutionary coadaptation were disentangled in a crop system through an extensive common garden experiment. Furthermore, evolutionary and coevolutionary effects on species-level and community-level productivity were linked to corresponding changes in functional traits. We found evidence for higher productivity and trait convergence with increasing familiarity with the plant communities. Furthermore, our results provide evidence for the coevolution of plants in mixtures leading to higher productivity of coadapted species. However, with the functional traits measured in our study, we could not fully explain the productivity benefits found upon coevolution. Our study investigated coevolution among randomly interacting plants and was able to demonstrate that coadaptation through coevolution of coexisting species in mixtures occurs and promotes ecosystem functioning (i.e., higher productivity). This result is particularly relevant for the diversification of agricultural and forest ecosystems, demonstrating the added value of artificially selecting plants for the communities they are familiar with.


Assuntos
Ecossistema , Melhoramento Vegetal , Agricultura/métodos , Produtos Agrícolas , Evolução Biológica
2.
Sci China Life Sci ; 67(4): 789-802, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38057621

RESUMO

Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity, but they are sensitive to climate change. The loss of cushion species can have broad consequences for associated biota. The potential plant community changes with the population dynamics of cushion plants remain, however, unclear. Using eight plant communities along a climatic and community successional gradient, we assessed cushion population dynamics, the underlying ecological constraints and hence associated plant community changes in alpine communities dominated by the foundational cushion plant Arenaria polytrichoides. The population dynamics of Arenaria are attributed to ecological constraints at a series of life history stages. Reproductive functions are constrained by increasing associated beneficiary plants; subsequent seedling establishment is constrained by temperature, water and light availability, extreme climate events, and interspecific competition; strong competitive exclusion may accelerate mortality and degeneration of cushion populations. Along with cushion dynamics, species composition, abundance and community structure gradually change. Once cushion plants completely degenerate, previously cushion-dominated communities shift to relatively stable communities that are overwhelmingly dominated by sedges. Climate warming may accelerate the degeneration process of A. polytrichoides. Degeneration of this foundational cushion plant will possibly induce massive changes in alpine plant communities and hence ecosystem functions in alpine ecosystems. The assessment of the population dynamics of foundation species is critical for an effective conservation of alpine biodiversity.


Assuntos
Biodiversidade , Ecossistema , Plantas , Mudança Climática , Biota
3.
BMC Plant Biol ; 23(1): 253, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183263

RESUMO

BACKGROUND: Legumes can fix atmospheric nitrogen (N) and facilitate N availability to their companion plants in crop mixtures. However, biological nitrogen fixation (BNF) of legumes in intercrops varies largely with the identity of the legume species. The aim of our study was to understand whether BNF and concentration of plant nutrients by common bean is influenced by the identity of the companion plant species in crop mixtures. In this greenhouse pot study, common beans were cultivated with another legume (chickpea) and a cereal (Sorghum). We compared BNF, crop biomass and nutrient assimilation of all plant species grown in monocultures with plants grown in crop mixtures. RESULTS: We found beans to exhibit low levels of BNF, and to potentially compete with other species for available soil N in crop mixtures. The BNF of chickpeas however, was enhanced when grown in mixtures. Furthermore, biomass, phosphorous and potassium values of chickpea and Sorghum plants were higher in monocultures, compared to in mixtures with beans; suggesting competitive effects of beans on these plants. Concentration of calcium, magnesium and zinc in beans was higher when grown with chickpeas than with Sorghum. CONCLUSIONS: It is generally assumed that legumes benefit their companion plant species. Our study highlights the contrary and shows that the specific benefits of cereal-legume mixtures are dependent on the growth rate of the species concerned. We further highlight that the potential of legume-legume mixtures is currently undervalued and may play a strong role in increasing N use efficiency of intercrop-based systems.


Assuntos
Fixação de Nitrogênio , Phaseolus , Solo , Grão Comestível , Biomassa , Nitrogênio
4.
Elife ; 112022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36097813

RESUMO

By capitalising on positive biodiversity-productivity relationships, intercropping provides opportunities to improve agricultural sustainability. Intercropping is generally implemented using commercial seeds that were bred for maximal productivity in monocultures, thereby ignoring the ability of plants to adapt over generations to the surrounding neighbourhood, notably through increased complementarity, that is reduced competition or increased facilitation. This is why using monoculture-adapted seeds for intercropping might limit the benefits of crop diversity on yield. However, the adaptation potential of crops and the corresponding changes in complementarity have not been explored in annual crop systems. Here we show that plant-plant interactions among annual crops shifted towards reduced competition and/or increased facilitation when the plants were growing in the same community type as their parents did in the previous two generations. Total yield did not respond to this common coexistence history, but in fertilized conditions, we observed increased overyielding in mixtures with a common coexistence history. Surprisingly, we observed character convergence between species sharing the same coexistence history for two generations, in monocultures but also in mixtures: the six crop species tested converged towards taller phenotypes with lower leaf dry matter content. This study provides the first empirical evidence for the potential of parental diversity affecting plant-plant interactions, species complementarity and therefore potentially ecosystem functioning of the following generations in annual cropping systems. Although further studies are required to assess the context-dependence of these results, our findings may still have important implications for diversified agriculture as they illustrate the potential of targeted cultivars to increase complementarity of species in intercropping, which could be achieved through specific breeding for mixtures.


Plants have two ways of interacting with each other: they can compete with each other if they use the same resources; or they can 'help' each other in what is known as facilitation, for example, when a larger plant protects a smaller plant in harsh environments. These interactions can vary over several generations in response to changes in the environment or the surrounding plant community. For instance, in plant communities formed by many different species, like in most natural systems, competition usually decreases over time as the plants 'learn' to grow together. In agriculture, intercropping ­ defined as growing at least two species of crop at the same time on the same field ­ takes advantage from a reduction in competition. The idea is that planting two species that grow differently together will lead to less competition than having a single crop because the two species will use slightly different resources, or use them at different times. However, intercropping has traditionally overlooked changes in the interactions between plants as a result of the crop species evolving after being grown together for generations. Indeed, farmers that practice intercropping generally use standard seeds that have been bred to produce high yields when planted on their own, in what is known as monoculture. If plants can adapt and become less competitive when they are grown together over several generations, then using these standard seeds might limit the success of intercropping. Stefan, Engbersen and Schöb wanted to know whether crop species adapt to the levels of plant diversity surrounding them over generations, and if so, how they do it. To find this out, they investigated how competition and facilitation changed when six crop species (wheat, oat, lentil, coriander, flax and camelina) that grow annually were grown together in different combinations over several generations. Stefan, Engbersen and Schöb started off with seeds normally used for growing these crops on their own, and planted them either on their own, or in different combinations of two or four species. They then repeated the experiment over the course of three years, each year using seeds from the previous year, recording both crop yields and changes in how the plants interacted with each other. The experiments showed that interactions among these annual crops shifted towards reduced competition and/or increased facilitation when the plants were growing alongside the same crops as their parents did in the previous two generations. Improving and promoting the development of intercropping is essential for agricultural sustainability, as it could offer alternatives to intensive monocultures (crops grown on their own that require increased resources). Stefan, Engbersen and Schöb's findings are relevant for programmes aimed at developing seeds for intercropping, as they highlight the importance of including diversity when developing these seeds. However, before these results can be used in the field, longer experiments (of more than three generations) in different environments should be carried out to confirm the findings. Another question that remains open is what the mechanisms underlying adaptations to intercropping are: more in-depth research will be needed to determine whether the changes observed have a genetic basis.


Assuntos
Ecossistema , Melhoramento Vegetal , Agricultura/métodos , Biodiversidade , Produtos Agrícolas/genética
5.
Trends Plant Sci ; 27(7): 717-728, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35282996

RESUMO

Better understanding of the mechanistic basis of plant plasticity will enhance efforts to breed crops resilient to predicted climate change. However, complexity in plasticity's conceptualisation and measurement may hinder fruitful crossover of concepts between disciplines that would enable such advances. We argue active adaptive plasticity is particularly important in shaping the fitness of wild plants, representing the first line of a plant's defence to environmental change. Here, we define how this concept may be applied to crop breeding, suggest appropriate approaches to measure it in crops, and propose a refocussing on active adaptive plasticity to enhance crop resilience. We also discuss how the same concept may have wider utility, such as in ex situ plant conservation and reintroductions.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Adaptação Fisiológica/genética , Mudança Climática , Produtos Agrícolas/genética
6.
Front Plant Sci ; 13: 813417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154224

RESUMO

Increasing plant diversity in agricultural systems provides promising solutions for sustainably increasing crop yield. It remains unclear; however, how plant-plant interactions in diverse systems are mediated by plant genetic variation. We conducted a greenhouse experiment in which we grew three varieties of common beans with three companion plant species (chickpeas, sorghum, and sunflower) in different combinations (crop mixtures, bean cultivar mixtures, and monocultures), with and without drought stress. We hypothesized that under drought stress, the effect of companion plant species on bean yield would be mediated by the drought tolerance potential of the species. We further hypothesized that this effect would vary across different bean cultivars. Overall, we show that the effect of companion plant species on bean yield was not influenced by drought stress; instead, it was dependent on the identity of the bean variety. This could partially be explained by variation in growth rate between bean varieties, where the fastest growing variety recorded the highest yield increase in plant mixtures. The effect of companion plant species on chickpea biomass, however, was potentially influenced by chickpea drought tolerance potential; chickpea biomass was recorded to be higher in plant mixtures than in its monoculture under drought conditions. Our study highlights that to develop plant mixtures, it is not only important to consider the functional traits of the interacting plant species, but also those of the different plant varieties. We further suggest that stress tolerance can be a useful trait for initial selection of plant varieties when developing crop mixtures.

7.
Ecol Appl ; 32(1): e02479, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657349

RESUMO

Increasing biodiversity generally enhances productivity through selection and complementarity effects not only in natural, but also in agricultural, systems. However, the quest to explain why diverse cropping systems are more productive than monocultures remains a central goal in agricultural science. In a mesocosm experiment, we constructed monocultures, two- and four-species mixtures from eight crop species with or without fertilizer and both in temperate Switzerland and dry, Mediterranean Spain. We measured physical factors and plant traits and related these in structural equation models to selection and complementarity effects to explain seed yield differences between monocultures and mixtures. Increased crop diversity increased seed yield in Switzerland. This positive biodiversity effect was driven to almost the same extent by selection and complementarity effects, which increased with plant height and specific leaf area (SLA), respectively. Also, ecological processes driving seed yield increases from monocultures to mixtures differed from those responsible for seed yield increases through the diversification of mixtures from two to four species. Whereas selection effects were mainly driven by one species, complementarity effects were linked to larger leaf area per unit leaf weight. Seed yield increases due to mixture diversification were driven only by complementarity effects and were not mediated through the measured traits, suggesting that ecological processes beyond those measured in this study were responsible for positive diversity effects on yield beyond two-species mixtures. By understanding the drivers of positive biodiversity-productivity relationships, we can improve our ability to predict species combinations that enhance ecosystem functioning and can promote sustainable agricultural production.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Produção Agrícola , Plantas
8.
Front Plant Sci ; 12: 668803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122489

RESUMO

Intercropping, i.e., the simultaneous cultivation of different crops on the same field, has demonstrated yield advantages compared to monoculture cropping. These yield advantages have often been attributed to complementary resource use, but few studies quantified the temporal complementarity of nutrient acquisition and biomass production. Our understanding of how nutrient uptake rates of nitrogen (N) and phosphorous (P) and biomass accumulation change throughout the growing season and between different neighbors is limited. We conducted weekly destructive harvests to measure temporal trajectories of N and P uptake and biomass production in three crop species (oat, lupin, and camelina) growing either as isolated single plants, in monocultures or as intercrops. Additionally, we quantified organic acid exudation in the rhizosphere and biological N2-fixation of lupin throughout the growing season. Logistic models were fitted to characterize nutrient acquisition and biomass accumulation trajectories. Nutrient uptake and biomass accumulation trajectories were curtailed by competitive interactions, resulting in earlier peak rates and lower total accumulated nutrients and biomass compared to cultivation as isolated single plants. Different pathways led to overyielding in the two mixtures. The oat-camelina mixture was characterized by a shift from belowground temporal niche partitioning of resource uptake to aboveground competition for light during the growing season. The oat-lupin mixture showed strong competitive interactions, where lupin eventually overyielded due to reliance on atmospheric N and stronger competitiveness for soil P compared to oat. Synthesis: This study demonstrates temporal shifts to earlier peak rates of plants growing with neighbors compared to those growing alone, with changes in uptake patterns suggesting that observed temporal shifts in our experiment were driven by competitive interactions rather than active plant behavior to reduce competition. The two differing pathways to overyielding in the two mixtures highlight the importance of examining temporal dynamics in intercropping systems to understand the underlying mechanisms of overyielding.

9.
Nat Plants ; 7(7): 893-898, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34168319

RESUMO

Resource allocation to reproduction is a critical trait for plant fitness1,2. This trait, called harvest index in the agricultural context3-5, determines how plant biomass is converted to seed yield and consequently financial revenue from numerous major staple crops. While plant diversity has been demonstrated to increase plant biomass6-8, plant diversity effects on seed yield of crops are ambiguous9 and dependent on the production syndrome10. This discrepancy might be explained through changes in the proportion of resources invested in reproduction in response to changes in plant diversity, namely through changes in species interactions and microenvironmental conditions11-14. Here, we show that increasing crop plant diversity from monocultures over two- to four-species mixtures increased annual primary productivity, resulting in overall higher plant biomass and, to a lesser extent, higher seed yield in mixtures compared with monocultures. The difference between the two responses to diversity was due to a reduced harvest index of the eight tested crop species in mixtures, possibly because their common cultivars have been bred for maximum performance in monoculture. While crop diversification provides a sustainable measure of agricultural intensification15, the use of currently available cultivars may compromise larger gains in seed yield. We therefore advocate regional breeding programmes for crop varieties to be used in mixtures that should exploit complementarity16 among crop species.


Assuntos
Biodiversidade , Biomassa , Produção Agrícola/métodos , Produção Agrícola/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Espanha , Suíça
10.
Front Microbiol ; 12: 660749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936016

RESUMO

Intensive agriculture has major negative impacts on ecosystem diversity and functioning, including that of soils. The associated reduction of soil biodiversity and essential soil functions, such as nutrient cycling, can restrict plant growth and crop yield. By increasing plant diversity in agricultural systems, intercropping could be a promising way to foster soil microbial diversity and functioning. However, plant-microbe interactions and the extent to which they influence crop yield under field conditions are still poorly understood. In this study, we performed an extensive intercropping experiment using eight crop species and 40 different crop mixtures to investigate how crop diversity affects soil microbial diversity and activity, and whether these changes subsequently affect crop yield. Experiments were carried out in mesocosms under natural conditions in Switzerland and in Spain, two countries with drastically different soils and climate, and our crop communities included either one, two or four species. We sampled and sequenced soil microbial DNA to assess soil microbial diversity, and measured soil basal respiration as a proxy for soil activity. Results indicate that in Switzerland, increasing crop diversity led to shifts in soil microbial community composition, and in particular to an increase of several plant-growth promoting microbes, such as members of the bacterial phylum Actinobacteria. These shifts in community composition subsequently led to a 15 and 35% increase in crop yield in 2 and 4-species mixtures, respectively. This suggests that the positive effects of crop diversity on crop productivity can partially be explained by changes in soil microbial composition. However, the effects of crop diversity on soil microbes were relatively small compared to the effects of abiotic factors such as fertilization (three times larger) or soil moisture (three times larger). Furthermore, these processes were context-dependent: in Spain, where resources were limited, soil microbial communities did not respond to crop diversity, and their effect on crop yield was less strong. This research highlights the potential beneficial role of soil microbial communities in intercropping systems, while also reflecting on the relative importance of crop diversity compared to abiotic drivers of microbiomes and emphasizing the context-dependence of crop-microbe relationships.

11.
Ecol Appl ; 31(4): e02311, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33630392

RESUMO

Implementing sustainable weed control strategies is a major challenge in agriculture. Intercropping offers a potential solution to control weed pressure by reducing the resources available for weeds; however, available research on the relationship between crop diversity and weed pressure and its consequences for crop yield is not yet fully conclusive. In this study, we performed an extensive intercropping experiment using eight crop species and 40 different species mixtures to examine how crop diversity affects weed communities and how the subsequent changes in weeds influence crop yield. Mesocosm experiments were carried out under field conditions in Switzerland and in Spain, which differ drastically in terms of climate, soil and weed community, and included monocultures, two- and four-species mixtures, and a control treatment without crops. Weed communities were assessed in terms of biomass, species number and evenness, and community composition. Results indicate that intercropping reduces weed biomass and diversity in Spain but not in Switzerland. In Switzerland, despite the lack of a crop diversity effect on weeds, crop yield increased with crop species number. Moreover, in Switzerland, where soil resources were abundant, increasing crop yield correlated with reduced weed biomass. In Spain, where water and nutrients were limited, crop yield was not related to weed biomass or diversity. The presented research applies plant community ecology in the context of agricultural crop production systems. We demonstrate that, in our study, increased crop yield in mixtures was not due to increased weed suppression in diverse crop communities, and so must be the result of other ecological processes. We further show that crop-weed relationships vary across environmental conditions; more specifically, our study shows that weeds are less detrimental to crop yield in harsher environments compared to benign abiotic conditions, where alternative strategies are needed to control weed pressure and ensure the yield benefits provided by intercropping.


Assuntos
Produtos Agrícolas , Controle de Plantas Daninhas , Agricultura , Plantas Daninhas , Espanha , Suíça
12.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526655

RESUMO

Biological diversity depends on multiple, cooccurring ecological interactions. However, most studies focus on one interaction type at a time, leaving community ecologists unsure of how positive and negative associations among species combine to influence biodiversity patterns. Using surveys of plant populations in alpine communities worldwide, we explore patterns of positive and negative associations among triads of species (modules) and their relationship to local biodiversity. Three modules, each incorporating both positive and negative associations, were overrepresented, thus acting as "network motifs." Furthermore, the overrepresentation of these network motifs is positively linked to species diversity globally. A theoretical model illustrates that these network motifs, based on competition between facilitated species or facilitation between inferior competitors, increase local persistence. Our findings suggest that the interplay of competition and facilitation is crucial for maintaining biodiversity.


Assuntos
Biodiversidade , Plantas , Comportamento Competitivo , Especificidade da Espécie
13.
Ecology ; 102(1): e03200, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970842

RESUMO

Where interspecific facilitation favors the establishment of high densities of a beneficiary species, strong intraspecific competition may subsequently impede beneficiary performance. Consequently, the negative influence of intraspecific competition between beneficiary individuals could potentially outweigh the positive influence of interspecific facilitation when, for example, higher densities of a beneficiary are negated by the negative effect of crowding on beneficiary reproduction. The aim of this study was, therefore, to examine the impact of an interspecific interaction on the outcome of intraspecific interactions within the context of plant-plant facilitation. We used the cushion-forming Azorella selago and a commonly co-occurring dominant perennial grass species, Agrostis magellanica, on sub-Antarctic Marion Island as a model system. We assessed the impact of an interspecific interaction (between A. selago and A. magellanica) on the outcome of intraspecific interactions (between A. magellanica individuals), by testing if the impact of A. magellanica density on A. magellanica performance is mediated by its interaction with A. selago. We observed evidence for competition among A. magellanica conspecifics, with a decreasing proportion of A. magellanica individuals being reproductive under higher conspecific density. This negative intraspecific effect was greater on A. selago than on the adjacent substrate, suggesting that the facilitative effect of A. selago changes the intensity of intraspecific interactions between A. magellanica individuals. However, experimentally reducing A. magellanica density did not affect the species' performance. We also observed that the effect of A. selago on A. magellanica was positive, and despite the negative effect of intraspecific density on the proportion of reproductive A. magellanica individuals, the net reproductive effort of A. magellanica (i.e., the density of reproductive individuals) was significantly greater on A. selago than on the adjacent substrate. These results highlight that, in abiotically severe environments, the positive effects of interspecific facilitation by a benefactor species may outweigh the negative effects of intraspecific competition among beneficiaries. More broadly, these results suggest that both positive inter- and intraspecific biotic interactions may be key to consider when examining spatial and temporal variation in species' performance.


Assuntos
Ecossistema , Plantas , Regiões Antárticas , Humanos , Poaceae , Reprodução
14.
Ecology ; 102(2): e03243, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33190225

RESUMO

Plants acting as ecosystem engineers create habitats and facilitate biodiversity maintenance within plant communities. Furthermore, biodiversity research has demonstrated that plant diversity enhances the productivity and functioning of ecosystems. However, these two fields of research developed in parallel and independent from one another, with the consequence that little is known about the role of ecosystem engineers in the relationship between biodiversity and ecosystem functioning across trophic levels. Here, we present an experimental framework to study this relationship. We combine facilitation by plants acting as ecosystem engineers with plant-insect interaction analysis and variance partitioning of biodiversity effects. We present a case-study experiment in which facilitation by a cushion-plant species and a dwarf-shrub species as ecosystem engineers increases positive effects of plant functional diversity (ecosystem engineers and associated plants) on ecosystem functioning (flower visitation rate). The experiment, conducted in the field during a single alpine flowering season, included the following treatments: (1) removal of plant species associated with ecosystem engineers, (2) exclusion (covering) of ecosystem engineer flowers, and (3) control, i.e., natural patches of ecosystem engineers and associated plant species. We found both positive and negative associational effects between plants depending on ecosystem engineer identity, indicating both pollination facilitation and interference. In both cases, patches supported by ecosystem engineers increased phylogenetic and functional diversity of flower visitors. Furthermore, complementarity effects between engineers and associated plants were positive for flower visitation rates. Our study reveals that plant facilitation can enhance the strength of biodiversity-ecosystem functioning relationships, with complementarity between plants for attracting more and diverse flower visitors being the likely driver. A potential mechanism is that synergy and complementarity between engineers and associated plants increase attractiveness for shared visitors and widen pollination niches. In synthesis, facilitation among plants can scale up to a full network, supporting ecosystem functioning both directly via microhabitat amelioration and indirectly via diversity effects.


Assuntos
Biodiversidade , Ecossistema , Animais , Filogenia , Plantas , Polinização
15.
Sci Total Environ ; 762: 143091, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33213902

RESUMO

Cushion plants' significant role for alpine biodiversity has been demonstrated in particular through their positive effects on plant diversity. However, their effects on higher trophic levels (e.g. insects) remain largely unclear. In this study, by field sampling in the Hengduan Mountains (HDM) in southwestern China, we evaluated the effects of an alpine gynodioecious cushion species, Arenaria polytrichoides (Carophyllaceae), on insect richness, abundance and population dynamics at two different elevations (4427 m vs. 4732 m) separately at two time periods (day vs. night) and in two growing seasons (early vs. late). The results showed that the total insect diversity decreases from low to high elevation sites. Some insect species were exclusively detected within A. polytrichoides cushions, leading to an increase in local insect richness from 7% to 35%. The positive effects of cushions on insect diversity could be attributed to unique biotic properties provided by cushions. Firstly, the effects were determined by the sexual dimorphism of the cushion with hermaphroditic cushions supporting higher insect diversity than female cushions. This could be because hermaphroditic cushions provide more resources, such as nectar and pollen grains, for insects than female cushions. Secondly, the cushions' associated beneficiary plants can also provide extra resources for attracting more insects, but this effect was mediated by the micro-environmental conditions. Finally, the magnitude of cushions' positive effects on insect dynamics were stronger under higher than under lower environmental stress. This study confirmed that facilitation by A. polytrichoides cushions in HDM plays an important role in constructing the alpine insect community and further regulating its dynamics. Moreover, the positive effects of cushions on insect dynamics increase with increasing environmental stress. Therefore, the distribution range of insects would quite possibly be expanded into higher elevation under future climate changes, which will induce new challenges for the local alpine ecosystems.


Assuntos
Altitude , Ecossistema , Animais , Biodiversidade , China , Insetos , Plantas
16.
Sci Total Environ ; 708: 134618, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31787289

RESUMO

The alpine treeline is shifting upward due to climate warming. However, the treeline species composition and the pace of its upward migration can be mediated by ecological interactions. In particular, so-called ecosystem engineers, i.e. species that modulate the microscale environmental conditions, at the treeline may play a crucial role. We conducted a three-year seedling transplant experiment at the alpine treeline ecotone in southwest China to study how the shrub Rhododendron rupicola modifies the microscale physical and biotic environments and thus influences the establishment and performance of the two treeline species Larix potaninii and Picea likiangensis. Seedlings were transplanted to the current timberline and treeline, as well as above the current treeline in order to determine the responses of the two tree species to the shrub with respect to the current tree distribution. R. rupicola modified the microenvironment by increasing soil moisture and nutrient contents, buffering soil temperature fluctuations, and by increasing richness and changing the composition of root-associated fungi. As a result, tree seedlings planted under shrubs had significantly higher survival, growth rates and nutrient accumulations than those planted in open ground. Furthermore, seedlings planted at lower elevations performed better than those planted at higher elevations. Beyond the treeline, seedling survival was very low on open ground but strongly facilitated by the shrub. Finally, facilitation effects were species-specific, with Larix benefitting more from the shrub than Picea, while Picea had less mortality than Larix in the absence of the shrub. This study demonstrates that shrubs, through the amelioration of physical and biotic microenvironmental conditions, can act as stepping stones for the establishment of selective tree species beyond the current treeline. This suggests that biotic interactions can strongly modify the treeline species composition and push the treeline beyond its current climatic limits, thereby facilitating the upward shift with ongoing climate warming.


Assuntos
Picea , Árvores , China , Ecossistema , Plântula
17.
Ecol Lett ; 22(9): 1472-1482, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31270929

RESUMO

Plant diversity fosters productivity in natural ecosystems. Biodiversity effects might increase agricultural yields at no cost in additional inputs. However, the effects of diversity on crop assemblages are inconsistent, probably because crops and wild plants differ in a range of traits relevant to plant-plant interactions. We tested whether domestication has changed the potential of crop mixtures to over-yield by comparing the performance and traits of major crop species and those of their wild progenitors under varying levels of diversity. We found stronger biodiversity effects in mixtures of wild progenitors, due to larger selection effects. Variation in selection effects was partly explained by within-mixture differences in leaf size. Our results indicate that domestication might disrupt the ability of crops to benefit from diverse neighbourhoods via reduced trait variance. These results highlight potential limitations of current crop mixtures to over-yield and the potential of breeding to re-establish variance and increase mixture performance.


Assuntos
Biodiversidade , Produtos Agrícolas/genética , Domesticação , Produtos Agrícolas/crescimento & desenvolvimento , Fenótipo , Melhoramento Vegetal
18.
Ecology ; 100(3): e02619, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636292

RESUMO

Plants grow in communities where they interact with other plants and with other living organisms such as pollinators. On the one hand, studies of plant-plant interactions rarely consider how plants interact with other trophic levels such as pollinators. On the other, studies of plant-animal interactions rarely deal with interactions within trophic levels such as plant-plant competition and facilitation. Thus, to what degree plant interactions affect biodiversity and ecological networks across trophic levels is poorly understood. We manipulated plant communities driven by foundation species facilitation and sampled plant-pollinator networks at fine spatial scale in a field experiment in Sierra Nevada, Spain. We found that plant-plant facilitation shaped pollinator diversity and structured pollination networks. Nonadditive effects of plant interactions on pollinator diversity and interaction diversity were synergistic in one foundation species networks while they were additive in another foundation species. Nonadditive effects of plant interactions were due to rewiring of pollination interactions. In addition, plant facilitation had negative effects on the structure of pollination networks likely due to increase in plant competition for pollination. Our results empirically demonstrate how different network types are coupled, revealing pervasive consequences of interaction chains in diverse communities.


Assuntos
Biodiversidade , Polinização , Animais , Insetos , Plantas , Espanha
19.
Ecology ; 100(3): e02624, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30644535

RESUMO

Positive biodiversity-ecosystem-functioning (BEF) relationships are commonly found in experimental and observational studies, but how they vary in different environmental contexts and under the influence of coexisting life forms is still controversial. Investigating these variations is important for making predictions regarding the dynamics of plant communities and carbon pools under global change. We conducted this study across 433 shrubland sites in northern China. We fitted structural equation models (SEMs) to analyze the variation in the species-richness-biomass relationships of shrubs and herbs along a wetness gradient and general liner models (GLMs) to analyze how shrub or herb biomass affected the species-richness-biomass relationship of the other life form. We found that the positive species-richness-biomass relationships for both shrubs and herbs became weaker or even negative with higher water availability, likely indicating stronger interspecific competition within life forms under more benign conditions. After accounting for variation in environmental contexts using residual regression, we found that the benign effect of greater facilitation by a larger shrub biomass reduced the positive species-richness-biomass relationships of herbs, causing them to become nonsignificant. Different levels of herb biomass, however, did not change the species-richness-biomass relationship of shrubs, possibly because greater herb biomass did not alter the stress level for shrubs. We conclude that biodiversity in the studied plant communities is particularly important for plant biomass production under arid conditions and that it might be possible to use shrubs as nurse plants to facilitate understory herb establishment in ecological restoration.


Assuntos
Ecossistema , Água , Biodiversidade , Biomassa , China
20.
Nat Ecol Evol ; 2(9): 1381-1385, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061562

RESUMO

Diverse experimental plant communities are more productive than monocultures. The increase of this biodiversity effect over time has been attributed to evolutionary selection for complementarity in mixtures. Here we show that evolutionary selection for enhanced net facilitative plant interactions occurred only in mixtures, while evolutionary selection for reduced net competition occurred in mixtures with mixture coexistence history and monocultures with monoculture coexistence history. Widespread declines in natural and agricultural biodiversity could therefore compromise potential evolution of facilitative interactions, that is, cornerstone processes in nature conservation and the development of sustainable agriculture.


Assuntos
Biodiversidade , Pradaria , Fenômenos Fisiológicos Vegetais , Evolução Biológica , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA